دانشجویان مواد دانشگاه تجن

گرچه منزل بس خطرناک است و مقصد بس بعید، هیچ راهی نیست که آن را نیست پایان، غم مخور

دانشجویان مواد دانشگاه تجن

گرچه منزل بس خطرناک است و مقصد بس بعید، هیچ راهی نیست که آن را نیست پایان، غم مخور

اصلاح ژنتیکی ارگانیسم

Genetically modified organism

A genetically modified organism (GMO) or genetically engineered organism (GEO) is an organism whose genetic material has been altered using genetic engineering techniques. These techniques, generally known as recombinant DNA technology, use DNA molecules from different sources, which are combined into one molecule to create a new set of genes. This DNA is then transferred into an organism, giving it modified or novel genes. Transgenic organisms, a subset of GMOs, are organisms which have inserted DNA that originated in a different species.

Production

Genetic modification involves the insertion or deletion of genes. When genes are inserted, they usually come from a different species, which is a form of horizontal gene transfer. In nature this can occur when exogenous DNA penetrates the cell membrane for any reason. To do this artificially may require attaching the genes to a virus or just physically inserting the extra DNA into the nucleus of the intended host with a very small syringe, or with very small particles fired from a gene gun. However, other methods exploit natural forms of gene transfer, such as the ability of Agrobacterium to transfer genetic material to plants, or the ability of lentiviruses to transfer genes to animal cells.

Uses

GMOs are used in biological and medical research, production of pharmaceutical drugs, experimental medicine (e.g. gene therapy), and agriculture (e.g. golden rice). The term "genetically modified organism" does not always imply, but can include, targeted insertions of genes from one species into another. Such methods are useful tools for biologists in many areas of research, including those who study the mechanisms of human and other diseases or fundamental biological processes in eukaryotic or prokaryotic cells.

To date the broadest and most controversial application of GMO technology is patent-protected food crops which are resistant to commercial herbicides or are able to produce pesticidal proteins from within the plant, or stacked trait seeds, which do both. The largest share of the GMO crops planted globally are owned by the US firm Monsanto. In 2007, Monsanto's trait technologies were planted on 246 million acres (1,000,000 km2) throughout the world, a growth of 13 percent from 2006.

In the United States, the United States Department of Agriculture (USDA) reports on the total area of GMO varieties planted. According to National Agricultural Statistics Service, the states published in these tables represent 81–86 percent of all corn planted area, 88–90 percent of all soybean planted area, and 81–93 percent of all upland cotton planted area (depending on the year).

USDA does not collect data for global area. Estimates are produced by the International Service for the Acquisition of Agri-biotech Applications (ISAAA) and can be found in the report, "Global Status of Commercialized Transgenic Crops: 2007".

Transgenic animals are also becoming useful commercially. On February 6, 2009 the U.S. Food and Drug Administration approved the first human biological drug produced from such an animal, a goat. The drug, ATryn, is an anticoagulant which reduces the probability of blood clots during surgery or childbirth. It is extracted from the goat's milk.

Detection

Testing on GMOs in food and feed is routinely done by molecular techniques like DNA microarrays or qPCR.

To avoid any kind of false positive or false negative testing outcome, comprehensive controls for every step of the process is mandatory. A CaMV check is important to avoid false positive outcomes based on virus contamination of the sample.

Transgenic microbes

Bacteria were the first organisms to be modified in the laboratory, due to their simple genetics. These organisms are now used for several purposes, and are particularly important in producing large amounts of pure human proteins for use in medicine.

Genetically modified bacteria are used to produce the protein insulin to treat diabetes. Similar bacteria have been used to produce clotting factors to treat haemophilia, and human growth hormone to treat various forms of dwarfism.

Transgenic animals

Some chimeras, like the blotched mouse shown, are created through genetic modification techniques like gene targeting.

Transgenic animals are used as experimental models to perform phenotypic and for testing in biomedical research. Other applications include the production of human hormones such as insulin.





Fruit flies

In biological research, transgenic fruit flies (Drosophila melanogaster) are model organisms used to study the effects of genetic changes on development. Fruit flies are often preferred over other animals due to their short life cycle, low maintenance requirements, and relatively simple genome compared to many vertebrates.

Mammals

Genetically modified mammals are an important category of genetically modified organisms. Transgenic mice are often used to study cellular and tissue-specific responses to disease.

In 1999, scientists at the University of Guelph in Ontario, Canada created the genetically engineered Enviropig™. The Enviropig excretes from 30 to 70.7% less phosphorus in manure depending upon the age and diet. In February 2010, Environment Canada determined that Enviropigs are in compliance with the Canadian Environmental Protection Act and can be produced outside of the research context in controlled facilities where they are segregated from other animals.

In 2009, scientists in Japan announced that they had successfully transferred a gene into a primate species (marmosets) and produced a stable line of breeding transgenic primates for the first time.

Fish

Genetically modified fish have promoters driving an over-production of "all fish" growth hormone. This resulted in dramatic growth enhancement in several species, including salmonids, carps and tilapias.

Gene therapy

Gene therapy, uses genetically modified viruses to deliver genes that can cure disease into human cells. Although gene therapy is still relatively new, it has had some successes. It has been used to treat genetic disorders such as severe combined immunodeficiency, and treatments are being developed for a range of other currently incurable diseases, such as cystic fibrosis, sickle cell anemia, and muscular dystrophy. Current gene therapy technology only targets the non-reproductive cells meaning that any changes introduced by the treatment can not be transmitted to the next generation. Gene therapy targeting the reproductive cells—so-called "Germ line Gene Therapy"—is very controversial and is unlikely to be developed in the near future.

Transgenic plants

Transgenic plants have been engineered to possess several desirable traits, including resistance to pests, herbicides, or harsh environmental conditions; improved product shelf life, and increased nutritional value. Since the first commercial cultivation of genetically modified plants in 1996, they have been modified to be tolerant to the herbicides glufosinate and glyphosate, to be resistant to virus damage as in Ringspot virus resistant GM papaya, grown in Hawaii, and to produce the Bt toxin, a potent insecticide. Most of transgenic varieties grown today are known as first generation transgenics, because the transgenic trait provides benefits to farmers. Plants of the second generation should directly benefit the consumer with nutritional enhancement, taste, texture, etc. In January 2008, scientists altered a carrot so that it would produce calcium and become a possible cure for osteoporosis; however, people would need to eat 1.5 kilograms of carrots per day to reach the required amount of calcium.

The coexistence of GM plants with conventional and organic crops has raised significant concern in many European countries. Since there is separate legislation for GM crops and a high demand from consumers for the freedom of choice between GM and non-GM foods, measures are required to separate foods and feed produced from GMO plants from conventional and organic foods. European research programs such as Co-Extra, Transcontainer, and SIGMEA are investigating appropriate tools and rules. At the field level, biological containment methods include isolation distances and pollen barriers.
ترجه در ادامه مطلب
SOURCE: http://en.wikipedia.org/wiki/Genetically_modified_organism
br / ادامه مطلب ...